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SOLUTION OF FUNDAMENTAL PROBLEMS OF THE THEORY OF 
ELASTICITY FOR INCOMPRESSIBLE MEDIA* 

M. I. LAZAHEV 

Limiting behavior of the solutions of the fundamental problems of the theory of 
elasticity with the Poisson's ratio o-112 is investigated. It is shown that the 
limits of the solutions of the fundamental problems are solutions of the correspond- 
ing Fredholm equations obtained from the initial equations by passing to the in- 
tegral operators at (J = '12. 

1. Let u (x) = (sr, u2, ug) be the displacement vector of the elastic body D filling a 
part of the space R33x and bounded by a closed Liapunov surface S. The vectoru(x)satis- 
fies, in D, the ~amG equation 

L,u E Au + (1 - 2~)~~ grad div u = 0 

We shall assume for simplicity that the surface S is connected, and consider the following 
four fundamental problems: 

Problem I*. L, u (x) = 0, x ED*; u (x) = f (x), x E S. 
Problem 2% L,u (x) = 0, x ED*; Tnou (x) = g (x), x E S. 

Here B+ and D-are the bounded and unbounded part of RS with the boundary S, T,,..,u is a vector 
with components 

E is the modulus of elasticity and.nr are the direction cosines of the outward normal n to 
S. 

Let L, beanoperator acting on a pair of functions II and p according to the rule 

L,(u; p) = {qdu - gradp; div u} 

Problem I,*. L,(u; p) = 0, x E D*; u = f, x E S. 

Problem &*. Lo (u; P) = 0, x ED*; T,,, (u; p) = g, x E S. 

The problems I,* and &* describe a stationary Stokes' flow of a viscous incompressible 
fluid, while the vector "has a meaning of velocity, p is the pressure and n is the coeffic- 
ient of dynamic viscosity. We assume that f and gare twice continuously differentiable on 
s. 

Problem 1+ always has a solution which is unique, and the problems i-, l,-,2- and 20- 
have unique solutions in the class of functions with an asymptotics at infinity ii1~1. The 
problem i,+ has not more than one solution, and the solution exists only when (I, n) = 0. Here 
(.,.) denotes a scalar product in L,(S). The Problems 2+ and 2,+ can be solved if and only if 
(g,rp,)=O (i=l, 2,...,6), and the solutions are defined with an accuracy of up to a linear com- 

bination of the vectors oi (here di denote the linearly independent vectors of inelastic dis- 
placement). The solutions of the problems 
ferentiable in D* (see /1,2/). 

1*,2*,1,* and 2,,* are all twice continously dif- 

2. Let 

be the fundamental solution of the operator L, : L,,V (x, y) = -28 (x - y) 1 (1 is the unit matrix) 
and the pair 

be the fundamental solution of the operator L,: L,(V,;P)= {-26(x -y);O} for n=E/3. 
Further, setting 0 = '12 - E, we shall denote the symbols referring to the Problems I* and 
2* at the particular value of c, by the subscript E. We shall also utilize the following 
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expressions for the potentials of density cp = (cp', (p2, (p3) (the prime denotes a transposition) 

Let us define the operators acting in L,(S) by the equations 

T,cp= s Z',erVe(x, Y)'P(Y)~$, T,*cp= ~LL~vV&Y)I'(P(Y) d,S 
s s 

Tow = j Tno, 0’ (xv Y); pk CG Y)) cp (Y) 43 9 To*cp = c IT,ol, (V” (XT Y); Pk (x7 Y))l' cp (Y) d,S, XES 
B 

The properties of the operators T, and Tea have been investigated in /2/, and those of T, 

and TO*, in /3/. The operators T, and T,* are conjugated in L.,(S) and continuous,the operat- 
ors T, and To* are conjugated in L,(S) and completely continuous, z (T,) 3 --1, C (To) 3 I,--1 and 

6>0, &>O exists such that 

X (I',) \ 1-i) c L-1 -+ S,i - 61, Z (T,) \ r-1,1) C l--1 + 6,, I - 8,], N (I + To*) = A'(1 + T,*) = I'i'i)~=~v V& >" 

Here Z(.) and iV(.) denote, respectively, the spectral manifold and the kernel of the operat- 

or within the brackets. It can be shown directly that T,= T,fk(lf &-IT, where T, is in- 

dependent of e. 

3. It is natural to require that the state of stress of an incompressible body a) shows 

little change when o deviates from 4 by a small amount, and b) depends continuously on the 

boundary conditions. Clearly, we cannot have more than one solution satisfying the condition 

a) (in the case of the Problem 2+ the solution under consideration is accurate to within the 

inelastic displacement). This follows from the uniqueness of the solution of the correspond- 

ing boundary value problem for E > 0. When we say a solution of the boundary value problem 

of the theory of elasticity for an incompressible body , we mean the limit of the solution of 

the corresponding boundary value problem as E+O (c)O). Obviously, a solution defined in 

this manner satisfies the condition a). Below we shall show that the above limit exists for 

the Problems I* and 2* , and next we shall prove that this implies the fulfilment of condi- 

tion b). 

Let us write the boundary value problem in the form: 

Here y 

mental 

es the 

exists 

is the corresponding boundary operator of the boundary value problem. For the funda- 

problems I* and 2*the operator A;’ is defined in R (A,) and continuous (R(.) denot- 

domain of values of the operator within the brackets). If the limit 

u0 = lim u, = lim A,-'F (E + 0) (3.1) 

for every FE R(A,), then fromthe Banach-Steinhaus principle of uniform boundedness 

it follows that the sequence A,-' is bounded uniformly in E and the operator A,,-’ defined by 

means of (3.1) is bounded, and this implies that u0 depends continuously on F. 

Ap,u, = F; A, ZE (L,; y), F = {0, f) 

4. Next we shall turn our attention to finding the limits of the solutions of the funda- 

mental problems with (I * 112. 

Problem 2+. The solution is sought in the form of the potential of a simple layer, i.e. 

we carry out the substitution 

u, = j VE(x, Y)R(Y)&$ (4.1) 

The substitution is equivalent and reduces the problem to an equation in (F~ on the boundary 

S. This equation can be written in the operator form as 

cp, + T,rp, = g (4.2) 

A solution of (4.2) exists if and only if g E II (I + T,) =- JON (I + T,*). The operator 

(I + T,)-’ regarded as the value of the resolvent of the constriction of the operator T, on 

R(I+ Te) at the point -1, is defined and continuous in R (I + TJ. In addition, from the 

properties of Z’(T,) if follows that 

(I + TJ’ = kgo (- Tz)” 

and any solution of (4.2) can therefore be written in the form 
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(4.3) 

Here we have @ EN(I + T,) and the potential of a simple layer of density ch is a vector 

of inelastic displacement of D+. Let us substitute (4.3) into (4.1) and make e tend to zero 

(u--+1/J. Since Z', as an operator function of E and V,(x,y) as a function of a are both con- 

tinuous at the zero, we have 

II ue - uo IL, + 0 (E * 0) 

where 1% is the potential of a simple layer of density 

The pair (uO;p) where p = n (x, cp), satisfies the boundary value Problem &'. 

Problem I-. We seek the solution in the form 

The function (4.4) satisfies in D-the condition Lu = 0, and the condition on Sleads to the 

equation 

'P-+T,*cp=F=f(x)--cei ~v,(x,y)$i(y)&S 
i=l s (4.5) 

Let cpi (5) (i = 1, 2, . . ., 6) be the eigenfunctions corresponding to the value of the operator Te 

equal to -1. If Ci can be chosen so that the conditions of solvability of (4.5) (F, Vi) = 
0 (i = 1, 2, . . ..6).hold, then the solution of the initial problem can be found uniquely since 

the potential of the double layer of density qi is zero when XED-. 
Let us consider, instead of (4.5), the equation 

It was shown in /4/ that under the conditions satisfying the operator T, we have a) 2 (Qe) c 
Z (Te)\ {-I}, therefore the equation (4.6) has a solution for any F, b) if cp is a solution 

of (4.6), then the conditions (cp,ql)=O and (F,cpi)= O(i=l, 2,...,6) follow from each other. 

Therefore if any of these conditions hold, then the solution cp is also a solution of (4.5). 

Let R, denote the value of the resolvent of Qe at the point -1. By virtue of the 

properties of the operator T,* we have 

The requirement that (9, $i)=O (i= 1,2,...,6),yields asystemof linear algebraic equations and 
theirsolutiongives ei. Itremainstoshow that the determinant of the matrix of the coefficients 

accompanying ci is not zero. We have 

which follow from the symmetry of V,(x, y) and the relations 

i 
V,(X,Y)cpi(Y)dyS=Ipi(x) (i=l,2,...,6) 

Consequently ci are determined uniquely by the conditions (F,cp,)= 0 and hence from the con- 

ditions (cp, J&) z 0. Thus the equation (4.5) has a corresponding function 

The coefficients ci represent a solution of the system (cp, qi) = 0 (i = 1, 2,.. ., 6). Repeat- 
ing the previous arguments for E = 0, we obtain a component of the solution u0 of the Problem 
I,- in the form (4_5).By virtue of the continuity in E at zero and of the continuity of V, in 

e , we conclude that (I uE - u,Il~,~n-,+O as e-0. Here the pair (u,;p) where p = rI,(~,cp) 
satisfies the boundary value Problem lo-. 

Problem 1+. The following assertion was proved in /5/. The solution of the problem 
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L,,u,=+F? XED’, 11,(x)=0, XES (FE&(L)+)) 

can be written in the form of the following series converging on the norm w,l (D+): 

us= &2e)".* 

where u0 is a solution of the problem 

&(u,;p)=+FF, XED+; u,,(x)=O, XES 

This implies, in particular, the following relation which will be used later: 

II U, - no ikt < c 11 ue - u. Iiw+(Dt) = 0 (cj (4.7) 

It can be shown that the relation (4.7) also holds for the solutions of the Problems I+ 
and lo+. To do this we first note the fact that the deformation energy of an incompressible 
body is finite requires that the condition divu=O and hence (~1~. n) =O holds. We shall 
therefore assume that the condition in the problem of the state of stress in an incompressible 
body, holds, 

Let us consider the problems 

.Q,= 0, x ED+; u, z f, x ES (4.8) 

&@I,; p) -z 0, X fzf)+; "* = f, X eX s (4.9) 

We extend f=O(S) to OE w,z(D+), such that diva =O. Carrying out the substitutions u,= 

Use+ Q1, u, = "10 + @P we arrive at the problems 

L,ul,zz -Aa), x ED+; u, = 0, x E S 
L,(u,,; p) = -A@, x E D+; ug = 0, x E S 

It is clear now that (4.7) holds also for the solutions of the problems (4.8) and (4.9). 
Problem Z-. The problem can be solved for E>O, starting from an integral equation 

for the displacement at the boundary obtained from the Green-Betti formula 

(4.10) 

To show that the limit limu, as E-+ 0 exists, we must investigate the structure of the re- 
solvent (I + T,*)-" as c -to. First we shall make a number of comments concerning the operat- 
or To* and the Pxoblems fO+ and 2,-, supplementing the facts which are already known. 

Let us seek a solution of the Problem I,' in the form of the potential of a double layer 

"0 = wo fx, cp)* p = rI (x, cpf 
We have the following integral equation for the vector cp at the boundary: 

-tp + T,*rp == f (4.11) 

Equation (4.11) has a solution when f E K (--I + T,*) = iN(--I + To) = {f :(f, n) = O}, and the 
solution can be written in the form 

‘~=cp,i-cp, qo=-+f--_~T:C(I+Tp*)fF:-N(-I+TTo) 
k=0 

(4.12) 

where C is an arbitrary constant and p is a solution of the equation -_Fc f To* p = 0. From 
the uniqueness of the solution of the problem we conclude that 

w, (x9 P) = 0, II, (x, y) = con&, x E: D+ 

Since the relation div,Vo(x, y)=O, XE D*, YES holds for the potential V, (x, YJ, we 
have, for any value of g, ,_ 

( \ V. (x, 39 g(y) 42 bE.5 n) =O 
B 

(4.13) 

Let us now return to the Problem 2-. Using the Green- Betti formula for the Problem 2,: 
and the fundamental solution V,P", we obtain, in the course of the passage to s, the follow- 
ing integral equation for u at the boundary of s: 

- u + f’o*u = - Vo (x, y) 8: (y) d,S s Go (x) 

Equation (4.14) has a solution by virtue of (4.131, at any value of R, and the solution can 
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be written in the form analogous to (4.12) 

u=ug _tCM (4.15) 

The solution of the Problem 2,- must satisfy the condition divu = 0, 5 E D-or (uls, n)= 0. 
Since (uO, n) = 0 and by virtue of the fact that unity is a simple eigenvalue of the operator 

T,, (M, n) # 0, we have c = 0. Thus the solution of the Problem is the pair (u&p) where 

m 
1 u~=---_~_~ 
2 c 

Tzk(I+ To*)Go 
k=O 

Let us inspect the resolvent of the operator Te* R (h, T,*) = @I - T,*)-‘. The operator 

T,* has an eigenvalue of total multiplicity equal to unity, of the form I+q(e) where 7((e) 

is an analytic function in the neighborhood of E = 0 and q(O)= 0. The following represent- 

ation holds near the point 1 +q(E) (see e.g. /6/): 

(4.16) 

Here P(E) is a projector which can be written in the form P (e) = p (e)(+, n(e)) where c (e) = 

p++pL1+..., n (e) = n + EnI + . . . are the eigenvalues of the operators T,* and T, respectiv- 

ely, corresponding to the eigenvalue 1 +-q((E) and analytic in the neighborhood of 8 = 0; 

R, (A, T,*) is the operator-valued function analytic near the point h = 1 + '1 (e). 

It can be shown that lim R,(l, T,*)Ge = R,(l, T,*)G, (e-+0) in the strict sense. Indeed, 

let G, = G1,+ Gle where Gze = P (E) G, and P (E) G1, = 0. From the definition of the operator 

R,(I,T,*) we have 

PC m 

Ro (13 T,*) G,= R ($3 T,*) G1,= - f G1,- f c Tlk(I + T,*) Gle, Ro(l.T,*)G,=--fG,-$~T;k(~+~,*)~, 
k=o k==O 

and from this follows 

We shall show that the last term tends to zero as N-m uniformly in E. This is obviously 

sufficient to ensure that the expression tends to zero from the left as e-+0. Let us in- 

spect the contraction of the op'erator T,* on M = (cp E L,(S): (cp, CpJ = 0, i = 1, 2,. . ., 6) . The spectral 

radius of this contraction is p(e)<1 -6(&). Moreover, S, exists such that b(e) > 80 >O, va E 

IO.e,l where e, is sufficiently small. It is sufficient now to note that (I + T,*) Cl, E M in 

order to obtain the estimate 

Next we turn our attention to the first term of the expansion (4.16). The expression 

for P(E) and by virtue of (G,, n) = 0 (see (4.13)) we have P(e)G,= ep (G,,nJ +O(s*). Con- 

sequently, the sufficient condition for the relation (4.15) to hold for the solution of the 

Problem 2- is, find that 11 (s) = 
qkak + 0 (ak+l), 

that the condition limq(e)/e = const# O,e+ 0 holds. We 
k < 1. Indeed, let us consider the possibilities: a) p,=U: b) pI#O. In 

the case a) we obtain (To* +xT,) p = p(x = 2e(l +2s)+), i.e. 1 EZ (T,*) and this is not possible, 

therefore h#O. 

Let 'pc be a solution of the equation --cp,+ T,*cp,= f when (f, n) = 0 

‘pe = ‘PO + P (e) f / q(E) + 0 (E) = ‘PO + e-“+‘P(n,, f) + e-t+* [ml, f) c + (% f) PJ + 0 (e-k+? + 0 (8) 

Consider the potential W,(x, cp,) for XED+. The previous arguments and the equality W,(x, 

P) = 0 together yield 

W,(% cpe) = W,(x, W) + e- k+a(n,, f) W, @*CL‘) + 0 (8) + o(E-*+s) (4.17) 

If & = p (or a, = a), then (To* +xT,) p =(I +xql)p and since 1 =I (T,*), we have q,#O (Or k=l 

which is the same). If on the other hand Pl#K then by virtue of the fact that plEN(--I+ 

To*) = @I> we have W, (X? h) # W, (x7 c) = 0. Moreover, if n1#n, then for the "general position" 

function f satisfying the condition (f,n)=O only we have (f,n,)#O. Since W,(x,cp,) is a solu- 

tion of the Problem l,+ for "0 (a = f, we find from (4.7) and (4.17) that k= 4. Thus on the 
surface Swe have 
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u, = P (E)G, / q (E) + II,, + 0 (E) = Ap + u. + 0 (e), A = const 

In fact, A = 0 and 11 ue - 11~11 = 0 (E). 

Indeed, let u"(x) = lim u,(n). x ED-, E+ 0. Passing in the representation u,(x), x E D-, to 

the limit through the sum of potentials of the double layer of density u,(x). x E S and a 

simple layer of density f, we find that div u"(x)=O,x~D-. From this we have (u"ls, n)=O and, 

as (WY, n) = 0, we have A =O. 

Thus the limits of the solutions of the four fundamental problems in question exist. 

From the point of view of the numerical computations, it is important that these limits can 

be found ising the method of successive approximations. 
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